Bounded finite set theory

Laurence Kirby

Baruch College, City University of New York

JAF 37, Florence, 2018

Arithmetic and finite set theory

The correspondence - does it work for bounded arithmetic?

$$
\text { FST : PA }=?: I \Delta_{0}
$$

FST $=$ Finite Set Theory

$$
=\mathrm{ZF}-\operatorname{Inf}+\neg \operatorname{lnf}(+\mathrm{TC})
$$

TC = Axiom of Transitive Containment

Arithmetic and finite set theory

The correspondence via Ackermann's interpretation

Let $x \in_{\text {Ack }} y$ be the predicate expressing that the coefficient of 2^{x} in the binary expansion of y is 1 . Then

- $\left\langle\mathbb{N}, \in_{A c k}\right\rangle \cong\left\langle V_{\omega}, \in\right\rangle$.
- If $M \models$ PA, then $A c k_{M}={ }_{d f}\left\langle M, \in_{A c k}^{M}\right\rangle \models$ FST and its ordinals are isomorphic to M.

Arithmetic and finite set theory

The correspondence via induction

- Adjunction: $x ; y=x \cup\{y\}$
- Work in the language $\mathcal{L}(0 ;)$
$\rightarrow \in$ is definable: $y \in x \leftrightarrow x ; y=x$
- PS_{0} consists of:

$$
\begin{gathered}
0 ; x \neq 0 \\
{[x ; y] ; y=x ; y} \\
{[x ; y] ; z=[x ; z] ; y} \\
{[x ; y] ; z=x ; y \leftrightarrow x ; z=x \vee z=y}
\end{gathered}
$$

Arithmetic and finite set theory

The correspondence via induction

Tarski-Givant induction:

$$
\varphi(0) \wedge \forall x \forall y(\varphi(x) \wedge \varphi(y) \rightarrow \varphi(x ; y)) \rightarrow \forall x \varphi(x)
$$

PS consists of PS_{0} together with induction for each first order φ (with parameters). (Previale)

- PS is logically equivalent to

ZF - Inf $+\neg \operatorname{Inf}+$ TC

$$
\mathrm{PS}: \mathrm{PA}=I \Sigma_{1} S: I \Sigma_{1}
$$

- If $M \models I \Sigma_{1}$, then $A c k_{M} \models I \Sigma_{1} S$ and the ordinals of $A c k_{M}$, together with the restrictions of addition and multiplication to them, are isomorphic to M.
- Parsons' Theorem transfers to set theory: the primitive recursive set functions are those provably total in $I \Sigma_{\mu} S$, where...

The primitive recursive set functions

are obtained from the initial functions

- the constant function $\tilde{0}(\vec{x})=0$,
- projections, and
- adjunction $x ; y$,
by closing under
- substitutions $f(\vec{x})=g\left(h_{1}(\vec{x}), \cdots, h_{k}(\vec{x})\right)$
- and recursion of form

$$
\begin{aligned}
f(0, \vec{z}) & =g(\vec{z}) \\
f([a ; p], \vec{z}) & =h(a, p, f(a, \vec{z}), f(p, \vec{z}), \vec{z})
\end{aligned}
$$

The primitive recursive set functions

include set-theoretic operators such as $\mathrm{P}, \cup, \bigcup,|x|=$ cardinality of $x, \mathrm{TC}(x)=$ transitive closure of x, V_{n}, and ordinal arithmetic operations $+, \cdot, x^{y}$.
$I \Delta_{0} S(\cup)$ means: $I \Delta_{0} S$ plus " \cup is total".
Or equivalently: I $\Delta_{0} S$ in language expanded by a function symbol \cup and axioms:

$$
x \cup 0=x \quad \text { and } \quad x \cup[y ; z]=(x \cup y) ; z
$$

and similarly for other primitive recursive functions.

$\mathcal{L}(0 ;<)$

 "Bounded with respect to what?" - a transitive relation is needed

 "Bounded with respect to what?" - a transitive relation is needed}
so we add $<$ to our language, intended to mean the transitive closure of the \in relation.
Let $\mathrm{PS}_{0}^{<}$be the result of adding to PS_{0} :

$$
x \nless 0 \quad \text { and } \quad x<y ; z \leftrightarrow x<y \vee x \leq z
$$

Then we define the class of Δ_{0} formulæ in the expanded language by allowing bounded quantification of form $\forall y<t, \exists y<t$ where t is a term. And we define $I \Delta_{0} S$ to be $\mathrm{PS}_{0}^{<}$together with induction for Δ_{0} formulæ in the expanded language.

$\mathrm{PS}: \mathrm{PA}=I \Delta_{0} S: I \Delta_{0} ?$

Proposition. Suppose $V \models I \Delta_{0} S$ and W is a transitive subset of V closed under adjunction. Then Δ_{0} formulæ are absolute between V and W, and $W \models I \Delta_{0} S$.

- Q1: Which axioms of set theory are provable in $I \Delta_{0} S$?
- Q2: Given $M \models I \Delta_{0}$, is there a model of $I \Delta_{0} S$ whose ordinal arithmetic is isomorphic to M ?

Which axioms of ZF are provable in

 $I \Delta_{0} S$?- $I \Delta_{0} S \vdash$ the Pair Set Axiom, Extensionality, \neg Inf, and the Axiom of Foundation.
- I $\Delta_{0} S(\mathrm{TC}, \mathrm{P}) \vdash \bigcup$, i.e. the Union Axiom. This is because $\bigcup x \in \mathrm{P}(\mathrm{TC}(x))$.
- $I \Delta_{0} S(\mathrm{P}) \vdash \Delta_{0}$-Comprehension.
- Does $I \Delta_{0} S \vdash \Delta_{0}$-Comprehension? ...If so, and if the answer to Q 2 is positive, then $I \Delta_{0} \vdash \Delta_{0} P H P$. This is because $I \Delta_{0} S$ proves a pigeon hole principle for functions which are sets.

Submodels of $A c k_{M}$

for $M \models I \Sigma_{1}$

- For $I \subseteq_{e} M: V_{I}=\bigcup_{i \in I} V_{i}$.
- $V_{I} \models I \Delta_{0} S(\bigcup, \mathrm{TC}, \mathrm{P})$.
- H_{i} is the set of all elements of $V_{M}=A c k_{M}$ whose transitive closure has cardinality $<i$, i.e. all sets of hereditary cardinality $<i$.
- If I is closed under + , then $H_{I} \models I \Delta_{0} S(\cup, T C)$.
- $H_{I} \models \mathrm{P}$ iff I is closed under exponentiation.

Submodels of $A c k_{M}$

for $M \models I \Sigma_{1}$

- $C_{i}=\left\{x \in V_{M}\left|V_{M} \models \forall y \leq x\right| y \mid<i\right\}$.
- Let $e_{0}=1, e_{n+1}=2^{e_{n}}$.
- Theorem:
(1) $V_{I} \cap C_{J} \models I \Delta_{0} S$.
(2) $V_{I} \cap C_{J} \models \cup$ iff $J \geq e_{I}$ or J is closed under addition.
(3) $V_{I} \cap C_{J} \models \bigcup$ iff $J \geq e_{I}$ or J is closed under multiplication.
(5) $V_{I} \cap C_{J} \models \mathrm{P}$ iff $J \geq e_{I}$ or J is closed under exponentiation.

Submodels of $A c k_{M}$

for $M \models I \Sigma_{1}$

- (4)(i) Suppose I is closed under addition. Then $V_{I} \cap C_{J} \models \mathrm{TC}$ iff $J \geq e_{I}$ or $J^{I}=J$.
(4)(ii) $V_{I} \cap C_{J} \models \mathrm{TC}$ iff $J \geq e_{I}$ or
$\exists i \in I\left(J^{I-i}=J \wedge e_{i} \in J\right)$.
- This theorem provides examples to show that e.g. $I \Delta_{0} S(\cup) \nvdash$ TC.
- Does $I \Delta_{0} S(\mathrm{TC}) \vdash \bigcup$?

Sets as digraphs

Each HF set x is uniquely specified by the extensional acyclic digraph with a single source
$G(x)=$ the membership relation restricted to $\mathrm{TC}(x) ; x$
e.g. $a=\{\{\{0\}\},\{0,\{0\}\}\}$

The ordinals of a model of $I \Delta_{0} S$

It depends which ordinals ...

- Q2: Given $M \models I \Delta_{0}$, is there a model of $I \Delta_{0} S$ whose ordinal arithmetic is isomorphic to M ?

Von Neumann ordinals (1923) (Zermelo,
Mirimanoff): $n+1=n ; n=n \cup\{n\}$
Zermelo ordinals (1908): $(n+1)_{z}=0 ; n_{z}=\left\{n_{z}\right\}$
They can differ, e.g. in $V_{I} \cap C_{J}$ with $J<I$, the von Neumann ordinals are J but the Zermelo ordinals are I.

Zermelo ordinals are simpler

 in setbuilder notation$$
\text { Zermelo: } \mathbf{\sigma}_{z}=\{\{\{\{\{\{ \}\}\}\}\}\}
$$

Von Neumann:

$$
\begin{aligned}
6= & \{\},\{\{ \}\},\{\{ \},\{\{ \}\}\}\},\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}, \\
& \{\},\{\{ \}\},\{\{ \},\{\{ \}\}\}\},\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}\}, \\
& \{\},\{\{ \}\},\{\{ \},\{\{ \}\}\}\},\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}, \\
& \{\},\{\{ \}\},\{\{ \},\{\{ \}\}\}\},\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}\}
\end{aligned}
$$

Exponential growth in the length of the representation for n means that you can't multiply in polynomial time!

Zermelo ordinals are simpler

 as digraphs

This time, only polynomially so.

Models of $I \Delta_{0}+$ Exp are expandable

Q2: Given $M \models I \Delta_{0}$, is there a model of $I \Delta_{0} S$ whose ordinal arithmetic is isomorphic to M ?

Yes if M has an end extension to a model of $I \Sigma_{1}$.
Theorem: Yes if $M \models$ Exp.
Idea: Code sets by their digraph representations, e.g.

$a=\{\{\{0\}\},\{0,\{0\}\}\}=$ the "pair of deuces" is represented by $s^{*}=\langle\{0\},\{1\},\{0,1\},\{2,3\}\rangle$ which is represented in turn by $s=\langle 1,2,3,12\rangle$.

Models of $I \Delta_{0}+$ Exp are expandable

Definition: A σ-sequence in M is a strictly increasing sequence $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ such that for each i, $0<s_{i}<2^{i}$.

If s is a σ-sequence, define $s_{i}^{*}=\left\{j<i \mid j \in_{A c k} s_{i}\right\}$ and s^{*} to be the corresponding sequence $\left\langle s_{1}^{*}, \ldots, s_{n}^{*}\right\rangle$. Then $s_{i}^{*} \subseteq\{0, \ldots, i-1\}$ and the s_{i}^{*} are distinct and non-empty.

The idea is to use the sequence s to represent the set whose digraph has nodes $0, \ldots, n$ with an edge from j to i just when $i \in s_{j}^{*}$.

The 28 sets whose graphs have 6 edges

$$
d_{0}
$$

The 88 sets whose graphs have 7 edges

中 4

中 \｜\｜\｜\｜\｜\｜\｜
\＆\＆\＆中 pp \＆
qP pp p P 4
ff \｜\｜\｜\＆ 1
$1+111111$

a^{a}

in the Zermelo arithmetic where a is the "pair of deuces"

