Bounded finite set theory

Laurence Kirby

Baruch College, City University of New York

JAF 37, Florence, 2018

The correspondence — does it work for bounded arithmetic?

$$FST : PA = ? : I\Delta_0$$

$$FST = Finite Set Theory$$
$$= ZF - Inf + \neg Inf (+TC)$$

TC = Axiom of Transitive Containment

The correspondence via Ackermann's interpretation

Let $x \in_{Ack} y$ be the predicate expressing that the coefficient of 2^x in the binary expansion of y is 1. Then

- $\blacktriangleright \langle \mathbb{N}, \in_{Ack} \rangle \cong \langle V_{\omega}, \in \rangle.$
- ▶ If $M \models \mathsf{PA}$, then $Ack_M =_{df} \langle M, \in_{Ack}^M \rangle \models \mathsf{FST}$ and its ordinals are isomorphic to M.

The correspondence via induction

- ▶ Adjunction: $x; y = x \cup \{y\}$
- ▶ Work in the language $\mathcal{L}(0;)$
- ightharpoonup \in is definable: $y \in x \leftrightarrow x; y = x$
- \triangleright PS₀ consists of:

$$0; x \neq 0$$

$$[x; y]; y = x; y$$

$$[x; y]; z = [x; z]; y$$

$$[x; y]; z = x; y \leftrightarrow x; z = x \lor z = y$$

The correspondence via induction

Tarski-Givant induction:

$$\varphi(0) \wedge \forall x \forall y (\varphi(x) \wedge \varphi(y) \rightarrow \varphi(x; y)) \rightarrow \forall x \varphi(x).$$

PS consists of PS₀ together with induction for each first order φ (with parameters). (Previale)

PS is logically equivalent to ZF − Inf + ¬Inf + TC is enough to Ackermannize

$$\mathsf{PS} : \mathsf{PA} = I\Sigma_1 S : I\Sigma_1$$

- ▶ If $M \models I\Sigma_1$, then $Ack_M \models I\Sigma_1S$ and the ordinals of Ack_M , together with the restrictions of addition and multiplication to them, are isomorphic to M.
- Parsons' Theorem transfers to set theory: the primitive recursive set functions are those provably total in $I\Sigma_1S$, where...

The primitive recursive set functions

are obtained from the initial functions

- the constant function $\tilde{0}(\vec{x}) = 0$,
- projections, and
- ightharpoonup adjunction x; y,

by closing under

- substitutions $f(\vec{x}) = g(h_1(\vec{x}), \dots, h_k(\vec{x}))$
- ▶ and *recursion* of form

$$f(0, \vec{z}) = g(\vec{z})$$

 $f([a; p], \vec{z}) = h(a, p, f(a, \vec{z}), f(p, \vec{z}), \vec{z})$

The primitive recursive set functions

include set-theoretic operators such as P, \cup , \bigcup , |x| = cardinality of x, TC(x) = transitive closure of x, V_n , and ordinal arithmetic operations +, \cdot , x^y .

 $I\Delta_0 S(\cup)$ means: $I\Delta_0 S$ plus " \cup is total". Or equivalently: $I\Delta_0 S$ in language expanded by a function symbol \cup and axioms:

$$x \cup 0 = x$$
 and $x \cup [y; z] = (x \cup y); z$

and similarly for other primitive recursive functions.

$$\mathcal{L}(0;<)$$

"Bounded with respect to what?" — a transitive relation is needed

so we add < to our language, intended to mean the transitive closure of the \in relation. Let $\mathsf{PS}_0^<$ be the result of adding to PS_0 :

$$x \neq 0$$
 and $x < y; z \leftrightarrow x < y \lor x \le z$

Then we define the class of Δ_0 formulæ in the expanded language by allowing bounded quantification of form $\forall y < t$, $\exists y < t$ where t is a term. And we define $I\Delta_0S$ to be $\mathsf{PS}_0^<$ together with induction for Δ_0 formulæ in the expanded language.

 $\mathsf{PS} : \mathsf{PA} = I \triangle_0 S : I \triangle_0 ?$

Proposition. Suppose $V \models I\Delta_0 S$ and W is a transitive subset of V closed under adjunction. Then Δ_0 formulæ are absolute between V and $W \models I\Delta_0 S$.

- ▶ Q1: Which axioms of set theory are provable in $I\Delta_0S$?
- ▶ Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0S$ whose ordinal arithmetic is isomorphic to M?

Which axioms of ZF are provable in $I\Delta_0S$?

- ► $I\Delta_0S$ \vdash the Pair Set Axiom, Extensionality, $\neg Inf$, and the Axiom of Foundation.
- ► $I\Delta_0 S(\mathsf{TC}, \mathsf{P}) \vdash \bigcup$, i.e. the Union Axiom. This is because $\bigcup x \in \mathsf{P}(\mathsf{TC}(x))$.
- ► $I\Delta_0 S(\mathsf{P}) \vdash \Delta_0$ -Comprehension.
- ▶ Does $I\Delta_0S \vdash \Delta_0$ -Comprehension? ... If so, and if the answer to Q2 is positive, then $I\Delta_0 \vdash \Delta_0PHP$. This is because $I\Delta_0S$ proves a pigeon hole principle for functions which are sets.

Submodels of Ack_M

for $M \models I\Sigma_1$

- ▶ For $I \subseteq_e M$: $V_I = \bigcup_{i \in I} V_i$.
- $ightharpoonup V_I \models I\Delta_0 S(\bigcup,\mathsf{TC},\mathsf{P}).$
- ► H_i is the set of all elements of $V_M = Ack_M$ whose transitive closure has cardinality < i, i.e. all sets of hereditary cardinality < i.
- ▶ If *I* is closed under +, then $H_I \models I\Delta_0S(\bigcup, \mathsf{TC})$.
- ▶ $H_I \models P$ iff I is closed under exponentiation.

Submodels of Ack_M

for $M \models I\Sigma_1$

- $C_i = \{ x \in V_M \mid V_M \models \forall y \le x \mid y \mid < i \}.$
- Let $e_0 = 1$, $e_{n+1} = 2^{e_n}$.
- Theorem:
 - $(1) V_I \cap C_J \models I\Delta_0 S.$
 - (2) $V_I \cap C_J \models \cup \text{ iff } J \geq e_I \text{ or } J \text{ is closed under addition.}$
 - (3) $V_I \cap C_J \models \bigcup \text{ iff } J \geq e_I \text{ or } J \text{ is closed under multiplication.}$
 - (5) $V_I \cap C_J \models \mathsf{P} \text{ iff } J \geq e_I \text{ or } J \text{ is closed under exponentiation.}$

Submodels of Ack_M

for $M \models I\Sigma_1$

▶ (4)(i) Suppose *I* is closed under addition. Then $V_I \cap C_J \models \mathsf{TC}$ iff $J \geq e_I$ or $J^I = J$.

(4)(ii)
$$V_I \cap C_J \models \mathsf{TC} \text{ iff } J \geq e_I \text{ or } \exists i \in I(J^{I-i} = J \land e_i \in J).$$

- ► This theorem provides examples to show that e.g. $I\Delta_0S(\bigcup) \not\vdash \mathsf{TC}$.
- ▶ Does $I\Delta_0 S(\mathsf{TC}) \vdash \bigcup$?

Sets as digraphs

(Aczel)

Each HF set *x* is uniquely specified by the extensional acyclic digraph with a single source

$$G(x)$$
 = the membership relation restricted to $TC(x)$; x

e.g.
$$a = \{\{\{0\}\}, \{0, \{0\}\}\}\}$$

The ordinals of a model of $I\Delta_0 S$

It depends which ordinals ...

▶ Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0S$ whose ordinal arithmetic is isomorphic to M?

Von Neumann ordinals (1923) (Zermelo, Mirimanoff): $n + 1 = n; n = n \cup \{n\}$

Zermelo ordinals (1908): $(n+1)_z = 0; n_z = \{n_z\}$

They can differ, e.g. in $V_I \cap C_J$ with J < I, the von Neumann ordinals are J but the Zermelo ordinals are I.

Zermelo ordinals are simpler

in setbuilder notation

```
Zermelo: 6_z = \{\{\{\{\{\{\}\}\}\}\}\}\}
```

Von Neumann:

Exponential growth in the length of the representation for *n* means that you can't multiply in polynomial time!

Zermelo ordinals are simpler

as digraphs

This time, only polynomially so.

Models of $I\Delta_0 + \mathsf{Exp}$ are expandable

Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0S$ whose ordinal arithmetic is isomorphic to M?

Yes if M has an end extension to a model of $I\Sigma_1$.

Theorem: Yes if $M \models \mathsf{Exp}$.

Idea: Code sets by their digraph representations, e.g.

$$a = \{\{\{0\}\}, \{0, \{0\}\}\}\}\$$
 = the "pair of deuces" is represented by $s^* = \langle \{0\}, \{1\}, \{0, 1\}, \{2, 3\} \rangle$ which is represented in turn by $s = \langle 1, 2, 3, 12 \rangle$.

Models of $I\Delta_0$ + Exp are expandable

Definition: A σ -sequence in M is a strictly increasing sequence $s = \langle s_1, \ldots, s_n \rangle$ such that for each i, $0 < s_i < 2^i$.

If s is a σ -sequence, define $s_i^* = \{j < i \mid j \in_{Ack} s_i\}$ and s^* to be the corresponding sequence $\langle s_1^*, \ldots, s_n^* \rangle$. Then $s_i^* \subseteq \{0, \ldots, i-1\}$ and the s_i^* are distinct and non-empty.

The idea is to use the sequence s to represent the set whose digraph has nodes $0, \ldots, n$ with an edge from j to i just when $i \in s_i^*$.

The 28 sets whose graphs have 6 edges

The 88 sets whose graphs have 7 edges

a^{a}

in the Zermelo arithmetic where a is the "pair of deuces"

